Синхронный реактивный двигатель

Синхронный реактивный электродвигатель - синхронный электродвигатель, вращающий момент которого обусловлен неравенством магнитных проводимостей по поперечной и продольной осям ротора, не имеющего обмоток возбуждения или постоянных магнитов [1].

Конструкция синхронного реактивного двигателя

Статор реактивного двигателя бывает с распределенной и сосредоточенной обмоткой, и состоит из корпуса и сердечника с обмоткой.

Синхронный реактивный двигатель
Синхронный реактивный двигатель
Статор с распределенной обмоткой
Статор синхронного реактивного электродвигателя с распределенной обмоткой

Выделяют три основных типа ротора реактивного двигателя: ротор с явновыраженными полюсами, аксиально-расслоенный ротор и поперечно-расслоенный ротор.

Ротор с явновыраженными полюсами
Ротор с явновыраженными полюсами
Аксиально-расслоенный ротор
Аксиально-расслоенный ротор
Поперечно-расслоенный ротор
Поперечно-расслоенный ротор

Принцип работы реактивного двигателя

Переменный ток, проходящий по обмоткам статора, создает вращающееся магнитное поле в воздушном зазоре электродвигателя. Крутящий момент создается, когда ротор пытается установить свою наиболее магнито проводящую ось (d-ось) с приложенным полем, для того чтобы минимизировать магнитное сопротивление в магнитной цепи. Амплитуда момента прямо пропорциональна разницы между продольной Ld и поперечной Lq индуктивностями. Следовательно, чем больше разница, тем больше создаваемый момент.

Магнитное поле синхронного реактивного двигателя
Линии магнитного поля синхронного реактивного электродвигателя

Главная идея может быть объяснена с помощью рисунка представленного ниже. Объект "a" состоящий из анизотропного материала имеет разную проводимость по оси d и оси q, в то время как изотропный магнитный материал объекта "b" имеет одинаковую проводимость во всех направлениях. Магнитное поле, которое прикладывается к анизотропному объекту "a", создает вращающий момент если существует угол между осью d и линиями магнитного поля. Очевидно, что если ось d объекта "a" не совпадает с линиями магнитного поля, объект будет вносить искажения в магнитное поле. При этом направление искаженных магнитных линий будут совпадать с осью q объекта.

Действие магнитного поля на объекты с анизотропной и изотропной геометрией
Объект с анизотропной геометрией (a) и изотропной геометрией (b) в магнитном поле
Силовые линии магнитного поля вокруг объекта с анизотропной геометрией
Силовые линии магнитного поля вокруг объекта с анизотропной геометрией

В синхронном реактивном электродвигателе магнитное поле создается синусоидально распределенной обмоткой статора. Поле вращается с синхронной скоростью и может считаться синусоидальным.

В такой ситуации всегда будет существовать момент направленный на то, чтобы уменьшить полную потенциальную энергию системы, путем уменьшения искажения поля по оси q (delta->0). Если угол delta сохранять постоянным, например путем контроля магнитного поля, тогда электромагнитная энергия будет непрерывно преобразовываться в механическую.

Ток статора отвечает за намагничивание и за создание момента, который пытается уменьшить искаженность поля. Управление моментом осуществляется путем контроля фазы тока, то есть угла между вектором тока обмоток статора и d-осью ротора во вращающейся системе координат.

Особенности синхронного реактивного электродвигателя

    Преимущества:
  • Простая и надежная конструкция ротора:
    ротор имеет простую конструкцию, состоящую из тонколистовой электротехнической стали, без магнитов и короткозамкнутой обмотки.
  • Низкий нагрев:
    так как в роторе отсутствуют токи, он не нагревается во время работы, увеличивая срок службы электродвигателя.
  • Нет магнитов:
    снижается конечная цена электродвигателя, так как при производстве не используются редко земельные металлы. При отсутствии магнитных сил упрощается содержание и техническое обслуживание электродвигателя.
  • Низкий момент инерции ротора:
    так как на роторе отсутствует обмотка и магниты, момент инерции ротора ниже, что позволяет электродвигателю быстрее набирать обороты и экономить электроэнергию.
  • Возможность регулирования скорости:
    в виду того, что синхронный реактивный электродвигатель для своей работы требует частотный преобразователь, имеется возможность управления скоростью вращения реактивного двигателя в широком диапазоне скоростей.
    Недостатки:
  • Частотное управление:
    для работы требуется частотный преобразователь.
  • Низкий коэффициент мощности:
    из-за того, что магнитный поток создается только за счет реактивного тока. Решается за счет использования частотного преобразователя с коррекцией мощности.

Смотрите также